
Classic Design Patterns in PHP

Part One

www.LifeMichael.com www.abelski.com

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 2

Design Pattern?

“Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core

of the solution to that problem, in such a way that you can

use this solution a million times over, without ever doing it

the same way twice”

Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King and
Shlomo Angel. A Pattern Language. Oxford University Press, New York, 1977.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 3

Software Design Pattern?

“Software patterns are reusable solutions to recurring

problems that we encounter during software development.”

Mark Grand, Patterns in Java. John Wiley & Sons, 2002.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 4

History

 The idea of using patterns evolves from the architecture field.
Christopher Alexander. A Pattern Language: Towns, Buildings, Construction

(Oxford University Press, 1977)

 The first GUI software patterns were set in 1987.
Ward Cunningham and Kent Beck. Using Pattern Languages for Object-Oriented

Programs. OOPSLA-87.

 The Gang of Four (AKA GOF) publish their “Design Patterns”

book in 1994.
Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson. Design

Patterns. Addison Wesley, 1994.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 5

History

This book defines 23 design patterns.

The design patterns are grouped
into three categories:
Creational Patterns
Behavioral Patterns
Structural Patterns

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 6

Why?

 Design patterns are language independent. Using design

patterns we might improve our code.

 Design patterns define a vocabulary. The communication

between developers within teams can improve.

 Design patters were already tested by other developers in

other software systems.

 Using design patterns in general assist us with the

development of a better software.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 7

Singleton

 Problem Description
How to declare a class ensuring that it won't be possible to instantiate it more than

once.

 General Solution
We can declare a class with one (or more) private constructors only and include

within that class a static method that once is called it checks whether an object of

this class was already instantiated... if an object was already created then that

static method will return its reference... if an object still wasn't created then it will

instantiate this class, places the reference for the new object within a specific

static variable and return it.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 8

Singleton

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 9

Singleton

<?php
class Inventory
{

private static $single;
private function __construct() { }
public static function getInstance()
{

if(self::$single==null)
{

self::$single = new Inventory();
}
return Inventory::$single;

}
}
?>

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 10

Factory

 Problem Description
How to create an object of a type selected based on external data received in run

time, without having the need to be aware of the actual type of the new created

object.

 General Solution
We will define an interface for creating new objects and let subclasses to decide

about the exact class that should be instantiated according to the received

arguments.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 11

Factory

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 12

Factory
<?php
class AnimalsFactory
{

public static function getAnimal($str)
{

if($str=="cat")
{

return new Cat();
}
else if($str=="tiger")
{

$ob = new Cat();
$ob->setCatType("tiger");
return $ob;

}
else if($str=="dog")
{

return new Dog();
}
throw new Exception('animal type doesnot exist');

}
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 13

Factory
class Cat
{

private $catType;
function __toString()
{

return "cat " . $this->catType;
}
function setCatType($str)
{

$this->catType = $str;
}

}

class Dog
{

function __toString()
{

return "dog";
}

}
?>

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 14

Proxy

 Problem Description
How to ensure that a costly object will be instantiated on demand (only when we

actually need it).

 General Solution
Define a class that its objects will be able to maintain a reference for the costly

object and will be capable of creating it (on demand... when there is a need for it).

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 15

Proxy

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 16

Proxy
<?php
interface IVideo
{

function play();
}
class Video implements IVideo
{

private $title;
public function __construct($title)
{

$this->title = $title;
}
public function play()
{

echo "playing ".$this->title." video";
}

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 17

Proxy
class VideoProxy implements IVideo
{

private $video;
private $title;
public function __construct($str)
{

$this->title = $str;
}
public function play()
{

if($this->video==null)
$this->video = new Video($this->title);

$this->video->play();
}

}
$ob = new VideoProxy("XMania III");
$ob->play();
?>

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 18

Template

 Problem Description
How to define a skeleton of algorithm allowing to defer some of its steps to the

subclasses... ?

 General Solution
We will define an abstract class with a concrete method that implements the

algorithm by calling abstract methods declared in the same class. Classes that

extend our abstract class will include their implementations for these abstract

methods.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 19

Template

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 20

Template

<?php

abstract class Shape
{

public abstract function area();
public function __toString()
{

return "my area is ".$this->area();
}

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 21

Template

class Circle extends Shape
{

private $radius;
public function __construct($rad)
{

$this->setRadius($rad);
}
public function getRadius()
{

return $this->radius;
}
public function setRadius($radius)
{

$this->radius = $radius;
}
public function area()
{

return pi()*$this->getRadius()*$this->getRadius();
}

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 22

Template
class Rectangle extends Shape
{

private $width;
private $height;
public function __construct($wVal, $hVal)
{

$this->setWidth($wVal);
$this->setHeight($hVal);

}
public function getWidth()
{

return $this->width;
}
public function setWidth($width)
{

$this->width = $width;
}
public function getHeight()
{

return $this->height;
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 23

Template
public function setHeight($height)
{

$this->height = $height;
}
public function area()
{

return $this->getWidth()*$this->getHeight();
}

}

$vec = array(new Rectangle(3,4), new Circle(5), new Rectangle(5,4));
foreach($vec as $ob)
{

echo "
".$ob;
}

?>

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 24

Decorator

 Problem Description
How to extend the functionality of a given object in a way that is transparent for its

clients without sub classing the given object.

 General Solution
Declaring a new class, that implements the same interface the original object

implements and delegates operations to the original given object.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 25

Decorator

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 26

Decorator

<?php
interface IBook
{

function setTitle($str);
function getTitle();
function setPages($num);
function getPages();
function setAuthor($author);
function getAuthor();

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 27

Decorator

final class StandardBook implements IBook
{

private $author;
private $title;
private $pages;
public function getAuthor()
{

return $this->author;
}
public function getPages()
{

return $this->pages;
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 28

Decorator
public function getTitle()
{

return $this->title;
}

public function setAuthor($author)
{

$this->author = $author;
}

public function setPages($pages)
{

$this->pages = $pages;
}

public function setTitle($title)
{

$this->title = $title;
}

}

interface ILibraryBook extends IBook
{

function printDetails();
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 29

Decorator
class LibraryBook implements ILibraryBook
{

private $book;
public function __construct()
{

$this->book = new StandardBook();
}
public function printDetails()
{

echo "
author=".$this->book->getAuthor();
echo "
pages=".$this->book->getPages();
echo "
title=".$this->book->getTitle();

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 30

Decorator
public function getAuthor()
{

return $this->book->getAuthor();
}
public function getPages()
{

return $this->book->getPages();
}
public function getTitle()
{

return $this->book->getTitle();
}
public function setAuthor($str)
{

$this->book->setAuthor($str);
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 31

Decorator
public function setPages($num)
{

$this->book->setPages($num);
}
public function setTitle($str)
{

$this->book->setTitle($str);
}

}
$book = new LibraryBook();
$book->setAuthor("haim");
$book->setPages(320);
$book->setTitle("core scala");
$book->printDetails();
?>

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 32

Prototype

 Problem Description
How to create new objects based on a prototype object we already have, without

knowing their exact class or the details of how to create them.

 General Solution
We will declare an abstract class that includes the clone() method. When calling

the clone() method a new object is instantiated from the same class the object (on

which the clone() method is called) was instantiated from.

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 33

Prototype

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 34

Prototype
<?php
interface Duplicatable
{

function duplicate();
}

class Circle implements Duplicatable
{

private $radius;
public function __construct($rad)
{

$this->setRadius($rad);
}
public function getRadius()
{

return $this->radius;
}
public function setRadius($radius)
{

$this->radius = $radius;
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 35

Prototype
public function duplicate()
{

return new Circle($this->getRadius());
}
public function area()
{

return pi()*$this->getRadius()*$this->getRadius();
}
public function __toString()
{

return "i m a circle... my area is ".$this->area();
}

}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 36

Prototype
class Rectangle implements Duplicatable
{

private $width;
private $height;
public function __construct($wVal, $hVal)
{

$this->setWidth($wVal);
$this->setHeight($hVal);

}
public function getWidth()
{

return $this->width;
}
public function setWidth($width)
{

$this->width = $width;
}
public function getHeight()
{

return $this->height;
}

09/08/11 (c) 2011 Haim Michael. All Rights Reserved. 37

Prototype
public function setHeight($height)
{

$this->height = $height;
}
public function duplicate()
{

return new Rectangle($this->getWidth(),$this->getHeight());
}
public function area()
{

return $this->getWidth()*$this->getHeight();
}
public function __toString()
{

return "i m a rectangle... my area is ".$this->area();
}

}

$obA = new Circle(3);
$obB = $obA->duplicate();
echo $obB;

?>

