
Mobile Hybrid Applications

www.LifeMichael.com

HTML5

© 2010 Haim Michael. All Rights Reserved.

Introduction

© 2008 Haim Michael

What is HTML 5.0?

 HTML 5.0 is the new coming specification that aims at

replacing HTML 4.01 and XHTML 1.0.

 The main target of HTML 5.0 is to reduce the need for

proprietary plug-in-based rich internet application

technologies, such as JavaFX, Silverlight and Adobe Flash.

© 2008 Haim Michael

The Standardization Process

 The work on HTML 5.0 has started in June 2004. As of June

2010 it is still in a working draft state at W3C.

 The development of HTML 5.0 is lead by Ian Hickson from

Google.

 Parts of HTML 5.0 are already supported by some of the

web browsers.

© 2008 Haim Michael

Markup Language

 HTML 5.0 introduces new elements and new attributes that

aims at assisting with the development of web applications

in accordance with today standards.

 Some of the new tags are semantic only, such as the <nav>

and the <footer> tags that replace <div>.

 Some of the new tags, such as the <audio> and the

<video> tags, provide new functionality.

© 2008 Haim Michael

Markup Language

 Some of the HTML 4.01 deprecated tags, such as

and <center> were dropped.

© 2008 Haim Michael

Application Programming Interface

 In addition to the new markup elements, HTML 5.0 specifies

new scripting application programming interfaces (APIs).
Canvas 2D Graphics

Browser History Management

Offline Storage Database

Media Playback

Drag & Drop

© 2010 Haim Michael. All Rights Reserved.

Geo Location

© 2010 Haim Michael. All Rights Reserved.

Introduction

 The Geo Location API allows the users to share their

location with web sites they trust.

 HTML 5.0 allows us to write JavaScript code that finds out

the latitude and the longitude.

© 2010 Haim Michael. All Rights Reserved.

The navigator.geolocation Property

 The geolocation new property on the global navigator

object provides us with the capability to get the location

information.

© 2010 Haim Michael. All Rights Reserved.

The getCurrentPosition Function

 Calling the getCurrentPositioneolocation function

on the navigator.geolocation property we can pass

over a callback function.

 The callback function will be called in case the Geo Location

API is supported and the user approves it to use his geo

location data.
...
navigator.geolocation.getCurrentPosition(myfunc,myerrorfunc);
...

© 2010 Haim Michael. All Rights Reserved.

The Location Callback Function

...
function myfunc(position)
{

var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var altitude = position.coords.altitude;
 var accuracy = position.coords.accuracy; //meters
 var altitudeAccuracy = position.coords.altitudeAccuracy; //meters
 var heading = position.coords.heading; //degrees clockwise from north
 var speed = position.coords.speed; //speed in meters/seconds
}
...

usually latitude, longitude and accuracy
are the only ones that get support

© 2010 Haim Michael. All Rights Reserved.

The Error Callback Function

...
function myerrorfunc(errorobject)
{

var message = errorobject.message;
var code = errorobject.code;

 ...
}
...

The possible error code values are:

PERMISSION_DENIED
POSITION_UNAVAILABLE
TIMEOUT
UNKNOWN_ERROR

© 2010 Haim Michael. All Rights Reserved.

Geo Location Code Sample
<html>
 <head>

<title>Just Simple Title</title>
<script language="javascript">
function myfunc(ob)
{
 alert("latitude="+ob.coords.latitude+" longitude="+ob.coords.longitude);
}
function errfunc(ob)
{
 alert(ob.message);
}
if(window.navigator.geolocation)
{
 window.navigator.geolocation.getCurrentPosition(myfunc,errfunc);
}
else
{
 alert("geolocation is not supported");
}
</script>
</head>
<body>
</body>

</html>

the support for this api doesn't exist on every browser and those
that do support this api still don't support it 100%.

© 2010 Haim Michael. All Rights Reserved.

Geo Location Code Sample

© 2010 Haim Michael. All Rights Reserved.

Offline Storage

© 2010 Haim Michael. All Rights Reserved.

Introduction

 The HTML 5.0 specification supports a well structured offline

storage solution.

 There are different types of offline storages:
Session Storage

Local Storage

© 2010 Haim Michael. All Rights Reserved.

Session Storage

 The session storage extends the capabilities we get when

using cookies.

 Unlike the cookies mechanism that limits us for storing up to

4kilobytes of data the session storage allows us much more

space.

 Unlike the cookies mechanism, the session data isn't sent

automatically to the server every HTTP request. The

developer can choose the exact key value pairs to be sent.

© 2010 Haim Michael. All Rights Reserved.

Session Storage

 Unlike cookies, session storage is tied to the browser

tab/window. Each tab/window maintains its own session

information.

© 2010 Haim Michael. All Rights Reserved.

Session Storage

<html>
<head>

<title>session storage page 1</title>
</head>
<body>

<h2>page 1</h2>
<script language="javascript">

sessionStorage.setItem('company', 'Zindell Technologies');
</script>
The 'company' (id) and 'Zindell Technologies' (value) were set as a key
value pair in the session storage mechanism.
<p>
next

</body>
</html>

© 2010 Haim Michael. All Rights Reserved.

Session Storage

<html>
<head>

<title>session storage page 2</title>
</head>
<body>

<h2>page 2</h2>
<script language="javascript">

function showData()
{

alert(sessionStorage.getItem('company'));
}

</script>
<form>

<input type="button" value="click me" onClick="showData()">
</form>

</body>
</html>

© 2010 Haim Michael. All Rights Reserved.

Session Storage

© 2010 Haim Michael. All Rights Reserved.

Session Storage

© 2010 Haim Michael. All Rights Reserved.

Session Storage

WebSocket

© 2010 Haim Michael. All Rights Reserved.

Introduction

 HTML 5 WebSockets defines a communication channel that

operates over the web and allows both direction

communication over a single socket.

 Using HTML 5 WebSockets we can dramatically reduce

unnecessary network traffic and latency.

© 2010 Haim Michael. All Rights Reserved.

Introduction

 Using HTML 5 WebSckets, when data changes on the web

server the web server can send a request to the client. We

no longer need to implement a client that polls the server.

© 2010 Haim Michael. All Rights Reserved.

Web Browser Support

 We can easily check whether the web browser supports

WebSocket or not.

if (window.WebSocket)
{

...
}

© 2010 Haim Michael. All Rights Reserved.

Web Browser Support

<div id="msg"></div>
<script>
if (window.WebSocket)
{

document.getElementById("msg").innerHTML = "browser supports";
}
else
{

document.getElementById("msg").innerHTML = "browser doesn't support";
}
</script>

http://www.youtube.com/watch?v=L3o_3vBC2w4

© 2010 Haim Michael. All Rights Reserved.

Web Browser Support

© 2010 Haim Michael. All Rights Reserved.

Creating Web Socket

var ws = new WebSocket(“ws://services.abelski.com/samples“);

We should pass over to the WebSocket constructore the URL address of
the web socket server we intend to use. That address should start with 'ws'
which stands for Web Sockets.

© 2010 Haim Michael. All Rights Reserved.

Call Back Functions

ws.onopen = function(event)
{

...
}

This function will be called when the connection is established.

© 2010 Haim Michael. All Rights Reserved.

Call Back Functions

ws.onmessage = function(event)
{

alert(event.data);
 ...
}

This function will be called when a message arrives from the server.

© 2010 Haim Michael. All Rights Reserved.

Call Back Functions

ws.onclose = function(event)
{
 ...
}

This function will be called when the connection is closed.

© 2010 Haim Michael. All Rights Reserved.

Sending Data

ws.postMessage(“this is the message sent to the server“);

This function will be called when the connection is closed.

© 2010 Haim Michael. All Rights Reserved.

Close Connection

ws.disconnect();

Calling this function will disconnect the connection with the server.

02/26/11 © 2008 Haim Michael. All Rights Reserved. 38

Canvas

02/26/11 © 2008 Haim Michael. All Rights Reserved. 39

Overview

 The Canvas element allows us to draw 2D graphics on our

web page.

 It is a rectangular area we control each one of its pixels.
...
<canvas id="myCanvas" width="200" height="100"></canvas>
...

02/26/11 © 2008 Haim Michael. All Rights Reserved. 40

Drawing on Canvas
Once the Canvas was created we can draw various graphics by

calling various JavaScript methods on its context.
...
<canvas id="my_canvas" width="800" height="600">
</canvas>
...
<script type="text/javascript">

var c=document.getElementById("my_canvas");
var context=c.getContext("2d");
context.fillStyle="#FFAA00";
context.fillRect(0,0,120,80);

</script>
...

02/26/11 © 2008 Haim Michael. All Rights Reserved. 41

Drawing on Canvas

<html>
<head>

<title>Canvas Demo</title>
</head>
<body>

<canvas id="my_canvas" width="800" height="600">
</canvas>
<script type="text/javascript">

var c=document.getElementById("my_canvas");
var context=c.getContext("2d");
context.fillStyle="#FFAA00";
context.fillRect(0,0,120,80);

</script>
</body>

</html>

02/26/11 © 2008 Haim Michael. All Rights Reserved. 42

Drawing on Canvas

WebGL 3D Graphics

© 2010 Haim Michael. All Rights Reserved.

Introduction

 WebGL is an API for 3D graphics within the web browser.

OpenGL leads the WebGL standard.

 Similarly to 2D graphics we should call the getContext

method on our canvas in order to get the context object we

can later use for creating the 3D graphics.

© 2010 Haim Michael. All Rights Reserved.

Introduction

http://www.youtube.com/watch?v=MSDiBA27Wo0

© 2010 Haim Michael. All Rights Reserved.

OpenGL ES 2

 The WebGL implementation is OpenGL ES 2, Khronos

royalty-free, cross platform API for full function 2D and 3D

graphics on embedded systems.

© 2010 Haim Michael. All Rights Reserved.

Foundation Layer

 Similarly to DOM that served as a fundamental layer for the

evolve of JavaScript libraries, so is expected with the

WebGL.

© 2010 Haim Michael. All Rights Reserved.

GLGE

 The GLGE is a javascript library intended to ease the use of

WebGL.

www.glge.org

http://www.glge.org/

© 2010 Haim Michael. All Rights Reserved.

GLGE

http://www.youtube.com/watch?v=Vva36undIss

© 2010 Haim Michael. All Rights Reserved.

SceneJS

 The SceneJS is a javascript library intended to ease the use

of WebGL.

www.scenejs.org

http://www.scenejs.org/

© 2010 Haim Michael. All Rights Reserved.

SceneJS

http://www.youtube.com/watch?v=I1wObzEm4_4

Multimedia

© 2010 Haim Michael. All Rights Reserved.

Video

 HTML 5.0 provides a standard for showing video. Using the

<video> element we can easily embed video within our

web page.

 The video formats the <video> element supports include

the following:
MPG4 (with H.264 video codec and AAC audio codec)

OGG (with Thedora video codec and Vorbis audio codec)

© 2010 Haim Michael. All Rights Reserved.

Video

<video src="myvid.ogg" controls="controls">

</video>

the control attribute is for adding the play, pause and volume controls

We can use the width and height
attributes in order to specify the size

Content we place in between the tags will be displayed when
the browser doesn't support displaying video

© 2010 Haim Michael. All Rights Reserved.

Video

<h1>HTML 5 Playing Video Sample</h1>

<video
src="http://mirror.bigbuckbunny.de/peach/bigbuckbunny_movies/big_buck_bunny_480p_stereo.ogg"

 controls="controls"
width="854"
height="480">

 browser does not support html 5.0

</video>

http://www.youtube.com/watch?v=eGM367x3gCM

© 2010 Haim Michael. All Rights Reserved.

Video

© 2010 Haim Michael. All Rights Reserved.

Video

 The HTML 5.0 specification supports the following attributes:

autoplay

we assign it with the value automatic in order to specify that we want the video to

start playing as soon as it is ready.

controls
we can assign it with the value controls in order to specify that we want to have the

video controls displayed on screen.

height
we can specify the height of the rectangle through which the video will be

displayed.

© 2010 Haim Michael. All Rights Reserved.

Video

width

we can specify the width of the rectangle through which the video will be displayed.

loop
we can specify the number of times we want the video to be played.

preload

we can assign the preload value and by doing so specify that we want the video to

be loaded when the page loads.

src
We use this attribute in order to specify the exact video file we want to play.

© 2010 Haim Michael. All Rights Reserved.

Audio

 The HTML 5.0 specification allows us playing sound using the

<audio> element.
...
<audio src="mymusic.ogg" controls="controls">
</audio>
...

 The <audio> element can play sound files or an audio

stream.

the control attribute adds the play, pause and volume controls

© 2010 Haim Michael. All Rights Reserved.

Audio

 The HTML 5.0 specification aims at supporting the following

sounds formats: MP3, WAV and Ogg Vorbis.

© 2010 Haim Michael. All Rights Reserved.

Audio

 We can add the <source> child elements in between the

audio element tags. The browser will use the first supported

format.
...
<audio controls="controls">
 <source src="mymusic.ogg" type="audio/ogg" />
 <source src="mymusic.mp3" type="audio/mpeg" />
 browser does not support html 5.0
</audio>
...

© 2010 Haim Michael. All Rights Reserved.

Audio

 The HTML 5.0 specification supports the following audio

attributes:

autoplay

we assign it with the value autoplay in order to specify that we want the audio to

start playing as soon as it is ready.

controls
we can assign it with the value controls in order to specify that we want to have the

audio controls displayed on screen.

loop
we can specify the number of times we want the audio to be played.

© 2010 Haim Michael. All Rights Reserved.

Audio

preload

we can assign it with preload in order to specify that we want the audio to be

loaded together with the page.

src
we assign this attribute with the URI of the audio file.

© 2010 Haim Michael. All Rights Reserved.

Audio

<h1>HTML 5 Playing Sound Sample</h1>

<audio controls="controls">
 <source src="antony_raijekov_views_track_04_jazzabel.ogg"

type="audio/ogg">

 browser does not support html 5.0

</audio>

http://www.youtube.com/watch?v=D79kA2Aci6Q

© 2010 Haim Michael. All Rights Reserved.

Audio

Web Workers

© 2010 Haim Michael. All Rights Reserved.

Introduction

 The HTML 5 Web Workers provides background processing

capabilities. We can use the Web Workers API for running

separated threads concurrently with the main scripts in our

web page.

 The Web Workers API is especially useful in the prevention

of user messages such as the 'unresponsive script'

message.

© 2010 Haim Michael. All Rights Reserved.

Limitations

 The code executed in a separated thread using the Web

Workers API cannot access neither the web page nor its

document object model.

© 2010 Haim Michael. All Rights Reserved.

Worker

 In order to get a specific JavaScript code executed

concurrently in a separated thread we should instantiate the

Worker type passing over the name of the file that includes

the JavaScript code we want to execute in a separated

thread.

© 2010 Haim Michael. All Rights Reserved.

Sample

<h2>Simple Web Worker Code Sample</h2>
<p>calculating the total number of prime numbers in between 1 and 100000</p>
<div id="total">1</div>
<script>

var worker = new Worker('background.js');
worker.onmessage = updateResult;
function updateResult(event)
{

document.getElementById('total').innerHTML = event.data;
};

</script>

http://www.youtube.com/watch?v=QKQXa_uhC04

© 2010 Haim Michael. All Rights Reserved.

Sample

var total = 2;
outer: for(var n=1;n<=100000;n++)
{

for (var i = 2; i <= Math.sqrt(n); i += 1)
{

if (n % i == 0) continue outer;
}
total++;
postMessage(total);

}

© 2010 Haim Michael. All Rights Reserved.

Sample

Communication

© 2010 Haim Michael. All Rights Reserved.

Introduction

 Using the Communication API we can communicate

between separated windows, tabs and iframes.

© 2010 Haim Michael. All Rights Reserved.

The PostMessage API

 Calling the postMessage on the object that represents the

other window will send the message to that other window.

© 2010 Haim Michael. All Rights Reserved.

The PostMessage API

otherWindow.postMessage(message, targetOrigin);

This is the reference to the other window. It can be a reference obtained using the
contentWindow property of an iframe element, the object returned by window.open,
or the object we get when referring the window.frames array either using a name
or a numeric index.

This is the string data we want to send over to the other window.

The second argument specifies the origin the otherWindow must be for the event to be
dispatched. It can be either a literal string "*" (which means no preference) or a URI.
When the event is dispatched the scheme, the hostname and the port of the otherWindow
must match the ones of the otherWindow. Otherwise, the event will not be dispatched.

© 2010 Haim Michael. All Rights Reserved.

Event Listener

 The other window/tab/iframe should add an event listener

for getting the message.

window.addEventListener("message", receiveMessage, false);

This is a string representing the specific event type to listen to.

This is the function we want to register.

Specifying whether the event handling method will function as a capture meaning that all
events of this type will be dispatched to the registered handling method before been
dispatched to other handlers beneath the specified handing method.

© 2010 Haim Michael. All Rights Reserved.

Event Listener

 The event listener method receives an argument that

includes the data, the origin and the source properties.

 The data is the received message, the origin describes

the window/tab/iframe from which the message was

received and the source refers to the window object that

sent the message.

© 2010 Haim Michael. All Rights Reserved.

Sample

<input type="text" id="msg"/>
<button id="send">Send</button>
<script>
document.getElementById("send").addEventListener("click",send_msg,true);
function send_msg()
{

var text=document.getElementById("msg").value;
document.getElementById("inner").

contentWindow.postMessage(text,"http://www.abelski.com");
}
</script>
<h2>the iframe</h2>
<iframe id="inner" src="inner.html"></iframe>

http://www.youtube.com/watch?v=R2hOvZ7bwXU

© 2010 Haim Michael. All Rights Reserved.

Sample

message data:<div id="received_msg"></div>

message origin:<div id="src"></div>
<script>
function handlingMsg(e)
{

document.getElementById('src').innerHTML = e.origin;
if(e.origin == "http://www.abelski.com")
{

document.getElementById('received_msg').innerHTML = e.data;
}

}
addEventListener("message",handlingMsg,true);
document.getElementById('received_msg').innerHTML="...";
document.getElementById('src').innerHTML="...";
</script>

inner.html

© 2010 Haim Michael. All Rights Reserved.

Sample

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

