

PHP 5.4 New Features
L
i fe M

ic h
ae l .c o

m

Haim Michael
October 14th, 2012

All logos, trade marks and brand names used in this presentation belong
to the respective owners.

Table of Content
L
i fe M

ic h
ae l .c o

m
● Support for Traits
● Arrays Short Syntax
● Function Array Dereferencing
● PHP Short Tags
● Instantiation Member Access
● Binary Number Format
● Session Upload Process
● Development Web Server

Support for Traits
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 we can define Traits. Defining a trait is very

similar to defining a class. Instead of using the keyword

class we use the keyword trait.

● The purpose of traits is to group functionality in a fine

grained and consistent way.

● It is not possible to instantiate a trait. The trait servers as

an additional capability when using inheritance in our

code.

Support for Traits
L
i fe M

ic h
ae l .c o

m

<?php
trait Academic
{
 function think()
 {
 echo "i m thinking!";
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

class Person
{
 private $id;
 private $name;
 function __construct($idValue,$nameValue)
 {
 $this->id = $idValue;
 $this->name = $nameValue;
 }
 function __toString()
 {
 return "id=".$this->id." name=".$this->name;
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

class Student extends Person
{
 use Academic;
 private $avg;
 function __construct($idVal,$nameVal,$avgVal)
 {
 parent::__construct($idVal,$nameVal);
 $this->avg = $avgVal;
 }
 function __toString()
 {
 $str = parent::__toString();
 return "avg=".$this->avg.$str;
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

class Lecturer extends Person
{
 use Academic;
 private $degree;
 function __construct($idVal,$nameVal,$degreeVal)
 {
 parent::__construct($idVal,$nameVal);
 $this->degree = $degreeVal;
 }
 function __toString()
 {
 $str = parent::__toString();
 return "degree=".$this->degree.$str;
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

$student = new Student(123123,"mosh",98);
$lecturer = new Lecturer(42343,"dan","mba");

$student->think();
echo "<hr/>";
$lecturer->think();

?>

Support for Traits
L
i fe M

ic h
ae l .c o

m
● Methods of the current class override methods we

inserted using the trait.

● Methods inserted by a trait override methods inherited

from a base class.

● We can insert multiple traits into one class by listing them

in the use statement separated by commas.

● If two traits (or more) insert two (or more) methods with

the same name then a fatal error is produced.

Support for Traits
L
i fe M

ic h
ae l .c o

m
● We can use the insteadof operator in order to choose

the exact method we want to use.

● We can use the as operator in order to include a

conflicting method under another name.

Support for Traits
L
i fe M

ic h
ae l .c o

m
<?php
trait Player
{
 function play()
 {
 echo "<h1>whoo-a</h1>";
 }
 function printdetails()
 {
 echo "<h1>player...</h1>";
 }
}
trait Gamer
{
 function play()
 {
 echo "<h1>shoooo</h1>";
 }
 function printdetails()
 {
 echo "<h1>gamer...</h1>";
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

class Person
{
 use Gamer, Player
 {
 Gamer::printdetails insteadof Player;
 Player::play insteadof Gamer;
 Gamer::play as xplay;
 }
}

$ob = new Person();
$ob->xplay();
$ob->play();
$ob->printdetails();

?>

Support for Traits
L
i fe M

ic h
ae l .c o

m
● We can define a trait composed of others. Doing so we

can put together separated traits into one.

trait Gamer
{
 function play()
 {
 echo "play...";
 }
}

trait Gambler
{
 function gamble()
 {
 echo "gamble...";
 }
}

Support for Traits
L
i fe M

ic h
ae l .c o

m

trait GamblingGamer
{
 use Gambler, Gamer;
}

class User
{
 use GamblingGamer;
}

$ob = new User();
$ob->gamble();
$ob->play();
?>

Support for Traits
L
i fe M

ic h
ae l .c o

m
● We can define a trait that includes the definition for

abstract methods. Doing so, we can use that trait to

impose requirements upon the classes that use it.

● It is possible to define our trait with properties. When

instantiating a class that uses our trait we will be able to

refer those properties in the new created object. If the

class that uses our trait includes the definition for a

property with the same name we will get an error.

Arrays Short Syntax
L
i fe M

ic h
ae l .c o

m
● As of PHP 5.4 we can create new arrays in the following

new short syntax:

<?php

$vec_b = ['a'=>'australia','b'=>'belgium','c'=>'canada'];

foreach($vec_b as $k=>$v)

{

echo " ".$k."=>".$v;

}

?>

Function Array Dereferncing
L
i fe M

ic h
ae l .c o

m
● As of PHP 5.4 we can develop a function that returns an

array and use a call to that function as if it was an array.

<?php
function countries()
{
 $vec = [“italy”,”france”,”israel”];
 return $vec;
}

echo countries()[0];
?>

PHP Short Tags
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 supports the <?…?> and <?= expression ?> short

tags by default. We don't need to introduce any change in

php.ini in order to use them.

<?
$numA = 24;
$numB = 4;
?>

<h1><?=($numA+$numB)?></h1>

Instantiation Member Access
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 allows us to access class members on the

object instantiation. It is useful in those cases when we

need to access a single member of an object and don't

need the object.

<?
class Utils
{
 function calc($numA,$numB)
 {
 return $numA+$numB;
 }
}

$temp = (new Utils())->calc(3,4);
echo $temp;
?>

Binary Number Format
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 allows us to write binary numbers. We just

need to precede our number with 0b.

<?
$a = 0b101;
$b = 0b110;
$c = $a + $b;
echo $c; // 11
?>

Session Upload Process
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 allows us to get detailed information about the

files that are currently been uploaded.

The form might be looking like this.

<?php
$key = ini_get("session.upload_progress.prefix").

$_POST[ini_get("session.upload_progress.name")];
var_dump($_SESSION[$key]);
?>

<form action="upload.php" method="POST" enctype="multipart/form-data">
 <input type="hidden"

name="<?php echo ini_get("session.upload_progress.name"); ?>"
value="123" />

 <input type="file" name="file1" />
 <input type="file" name="file2" />
 <input type="file" name="file3" />
 <input type="submit" />
</form>

Development Web Server
L
i fe M

ic h
ae l .c o

m
● PHP 5.4 includes a built-in web server. This server

might assist during the development phase.

Questions & Answers
L
i fe M

ic h
ae l .c o

m
● Two courses you might find interesting include

PHP Cross Platform Mobile Applications

more info

.NET Cloud Based Web Applications

more info

Android 4.1 Applications Development

more info

● If you enjoyed my lecture please leave me a comment

at http://speakermix.com/life-michael.

Thanks for your time!

Haim.

http://www.xperato.com/hit/hitphp.html
http://www.xperato.com/hit/hitnet.html
http://www.xperato.com/hit/hitandroid.html
http://speakermix.com/life-michael

	Slide 1
	page0
	page2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

